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ZEROS OF 2-ADIC L-FUNCTIONS AND CONGRUENCES 
FOR CLASS NUMBERS AND FUNDAMENTAL UNITS 

DANIEL C. SHANKS, PATRICK J. SIME, AND LAWRENCE C. WASHINGTON 

ABSTRACT. We study the imaginary quadratic fields such that the Iwasawa 
A2-invariant equals 1, obtaining information on zeros of 2-adic L-functions 
and relating this to congruences for fundamental units and class numbers. 

This paper explores the interplay between zeros of 2-adic L-functions and congru- 
ences for fundamental units and class numbers of quadratic fields. An underlying 
motivation was to study the distribution of zeros of 2-adic L-functions, the basic 
philosophy being that the location of the zeros causes restrictions on the 2-adic be- 
havior of the class numbers and fundamental units of real quadratic fields. Though 
the predicted restrictions involved the unit and class number together, numerical 
computations (we used PARI) revealed definite patterns for the unit and class num- 
ber separately, which we were then able to prove. Several of these congruences are 
classical, but some of them seem to be new. 

We use the information obtained to study the distribution of the zeros, in partic- 
ular their distances from 1 and 0. In a previous paper [14], one of us showed that, 
if (2P + 1)/3 is prime infinitely often, then it is possible to have zeros of 2-adic L- 
functions arbitrarily close to s = 1. Recently, Morain [7] showed that (212391 + 1)/3 
is prime, which yields a 2-adic L-function with a zero 1 satisfying 11- 12= 2-6194 

(see the discussion following Theorem 5). 
In previous papers [12], [15], one of the present authors studied zeros of 3-adic 

L-functions in a somewhat similar approach. However, the advantage of using 2- 
adic L-functions for quadratic fields Q(/m_) is that not only is the number of zeros 
bounded by A-, the Iwasawa invariant for the cyclotomic Z2-extension of Q( -in), 

but also there is a simple formula for A- due to Y. Kida [6] and B. Ferrero [4]. This 
allows us to keep the number of zeros under control. In fact, throughout the present 
paper we restrict ourselves to the case A- = 1, so we are dealing with at most one 
zero. 

1. 2-ADIc L-FUNCTIONS 

Let X be the non-trivial Dirichlet character associated to the real quadratic field 
Q?(+in), where m is taken to be squarefree. The 2-adic L-function L2 (s, X) satisfies 
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L2(1- n,X) =-(1 - Xw-?(2)2n-) X 

for all n > 1, where w is the non-trivial character mod 4 and Bn, xw-,l is a general- 
ized Bernoulli number (for more on p-adic L-functions, see [13]). The 2-adic class 
numuber formula states that 

L2(1, X) I (1- X(2) )2/l 1092 e 

where h+, E, and d are the class number, fundamental unit, and discriminant of 
Q (t), and log2 is the 2-adic logarithm. Iwasawa has shown that there is a power 
series g(T) = g(T, X) E Z2 [[T]] such that 

L2 (s, X)= 2g((I + 4)S - 1) 

The Weierstrass preparation theorem says that there is a factorization 

g(T) = P(T) U(T) 

where P(T) is a distinguished polynomial and U(T) is invertible in Z2[[T]]. The 
degree of P(T) is A-, the Iwasawa invariant for the cyclotomic 22-extension of 
Q (/-ni). Note that Q( -in) corresponds to the character XW-1- 

Proposition (Kida [6], Ferrero [4]). Let m > 4 be squarefree and let A- be the 
Iwasawa invariant for the cyclotomic 72-extension of Q(/-in). Then 

A- =-1 + E -[P2 -1]2, 
plm. 

p odd 

where [n]2= 2v2(n) is the largest power of 2 dividing n. 

Corollary. (a) A- = 0 if and only if r = p or 2p, where p ?3 (mod 8) is 
przme. 

(b) A- = 1 if and only if m or rn/2 is one of the following: 
1. p, with p ?_ 7 (mod 16) 
2. pq, with p, q ?3 (mod 8). 

Let g(T) = bo + b1T + b2T2 + ***. Recall that A- is the index of the first 
coefficient b. that is not divisible by 2. Therefore A- = 0 if and only if 2 t bo, and 
A- = 1 if and only if 2 1 bo and 2 t b1. Note that 

2bo = 2g(0) = L2 (0, X) = -(I1- XW- (2)) Bl,l;w- I I 
so bo = 0 if and only if X-1(2) = 1, which happens if and only if m 7 (mod 8). 
In this case we say that L2(s, X) has a trivial zero. 

Let h- be the class number of Q(/>-i). It is well-known that h -B1 )w-i, 
so 

bo (1 -X- (2))h 2 

We can also consider a power series f (T) g( 4T-1) = ao + a1T + . Then 

L2(s, X) = 2f ((1 + 4)1-s _ 1) 

and ao = L2 (1, X). Since T - 1 is an invertible change of variables over 
Z2, we find that A- is the index i of the first odd coefficient ai. 
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Theorem 1. Assume A- = 1. 
1. v2(bo) > 1 and v2(L2(1,X)) > 2. 
2. L2(s,X) has a zero /3 E Z2 if and only if v2(bo) > 2, and if and only if 

V2 (L2 (1X)) > 3. 
3. If f3 exists, then V2( -1) > 1 if and only if v2(bo) = 2, and v2(f) 1 if and 

only if v2 (L2 (1, X)) 3. 
4. If 13 exists, then v2(L2(1, X)) = V2(3- 1) + 3 and v2(bo) = v2(/) + 2. 

Remark. Let V/ be the quadratic character corresponding to Q(X2). It follows from 
the work of Childress and Gold [2] that if A- = 1 and L2(s, X) has no zero in Z2, 

then the zero appears one step up (if 2 t m) the Z2-extension of the quadratic field 
Q (Vin); namely, L2(s, Vx) = 2g(-(1 + 4)S - 1) has a zero. This can be seen in the 
proof below, since in this case (1 + 4)S + 1 =--a has a solution s = /. 

Proof. The assumption that A- = 1 yields (1). We have deg P(T) = A- = 1, so 
g(T) = (T-oz)U(T) with a E 2Z2. Since U(O) E 22x, it follows that v2(a) = v2(bo). 
If L2(3,X) = 0, then (1 + 4)f -1 = a, so a - 0 (mod 4), hence v2(bo) > 2. 
Moreover, V2(Oa) = 2 if and only if 3 is odd. Suppose now that v2(bo) > 2. Then 
3 = 10g2 (1 + a)/ 1og2 (1 + 4) is a root of L2 (s, X). The same argument applied to 
f (T) completes the proofs of (2) and (3). 

To prove (4), let 13 and oa be as above. Then 

L2(1, X) = L2(1, X) -L2(, x) 

= 2g(4) - 2g(oz) 

= 2(bl(4- a) + b2(42 -a2) + ***) 

= 2(4- a)(bi +b2(4+oz) + ) 

2(4 - a) (mod 4(4 - a)), 

since b, is odd and oz =- O (mod 4). But oz -4 = (I + 4) ((I + 4)0-1 - 1) = 4(0 - 1) 
(mod 8(/3 - 1)), so the first part of (4) follows. The second part follows from the 
same argument applied to f (T). LII 

The above theorem expresses quantitatively the principle that a zero close to 1 
causes L2(1, X) to be small. This can happen only if either h+ or log2 6 is divisible 
by a high power of 2. On the other hand, if h- is divisible by a high power of 2 
then E e 2Z2, which of course says that if L2(0, X) is small then / is forced to be 
near 0. Theorem 1 has the following interesting consequence. 

Corollary. Assume A- = 1. If v2 (bo) > 3 then v2 (L2 (1, X)) = 3. If v2 (L2 (1, X)) > 
4 then v2 (bo) = 2. 

In particular, this implies, in the case A- = 1, that when h- is divisible by a 
high power of 2, or if X-1(2) 1, then v2(h+) and v2(10g2 6) are bounded. Also, 
if v2(h+) or v2(10g2 6) is large, then v2(h-) is bounded (as long as the Euler factor 
does not cause a trivial zero. In the next section, we investigate this phenomenon. 
Our point of view is to start with v2 (h-) and see what restrictions are imposed on 
v2(h+) and v2(10g2 6). Of course, we could similarly start with v2(h+) + v2(10g2 6) 

and study the restrictions imposed on v2 (h-). In fact, in Theorem 4(2), Theorem 
5(3), Theorem 6(2), and Theorem 7(b)(1), we have v2(h-) = 3, but only inequalities 
for what happens with v2 (h+) and v2 (10g2 c). This is because the cause and effect 
are reversed: h+ and 6 are causing the restriction v2(h-) = 3. 
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2. CONGRUENCES 

The above corollary implies that if v2 (bo) > 3 then we have 2-adic restrictions 
on h+ and E. In this section we investigate this phenomenon. 

Throughout, p and q will always denote primes. We let 
h+ = class number of Q( in), 

h+ = narrow class number of Q(X/i) 
h- = the class number of Q( -in), 

E = a + b/m = the fundamental unit of ?Q( in), 

E2 = A + B/ 
Recall that h+ = h+ if E has norm -1, and h+ - h+/2 if E has norm +1. 
We will often need the fact that when E has norm +1, 

-(a+1)+ -(a-i) W l 2 ( ) l 2 r2 

In particular, 2(a ? 1) cannot both be of the form mr2 or r2 with rE ?Q, since 
otherwise V would be in Q(Vin). 

Another fact we will use often is that if x= ?1 (mod 23/2) then v2(10g2 x) 
v2(x T 1). 

We start with the case of a trivial zero, so bo = 0. Since we must have m 7 
(mod 8), we have either m = p _ 7 (mod 16) or m = pq with p _ 3 (mod 8) and 
q _ 5 (mod 8). The following result does not seem to be well-known; we did not 
find it in the literature. 

Theorem 2. (a) If m = p 7 (mod 16), then 

V2(h+) = 0, V2(og2()1 3, V2(h-) = 0, 

a -8 (mod 16), b ?3 (mod 8). 

(b) If m =pq with p-3 (mod 8) and q 5 (mod 8), then 

v2(h+) = 1, v2(10g2E) = 2, A ?31 (mod 64), B 8 (mod 16). 

Remark. In part (b), v2(h-) is not constant. For example, when m = 15, h- 2 
and when m = 39, h- = 4. 

Proof. (a) The fact that h- is odd is classical. We have (a + 1)(a - 1) = pb2. If 
gcd(a + 1, a - 1) = 2 then one of (a ? 1)/2 is a square and the other is p times 

a square. Therefore E a (a + 1) + 1 (a - 1) E Q(Ep), which is impossible. 

Therefore gcd=1. If a - = r2 and a + 1 - s2p for integers r, s, then s2p -r2= 2, 
which is impossible mod 8. Therefore a + 1 = r2 and a-1 = s2p, so r2 _ s2p = 2. 
Clearly r, s are odd. Since r2 _ 2 modulo each prime factor of s, each such factor 
must be ?1 mod 8 so s _ I1 (mod 8). Therefore a = 1+s2p 8 (mod 16). Since 
a -pb2 = 1, we must have b ?3 (mod 8). Therefore E2 2a2 1 + 2abv p 
-1+16 p (mod 32), so V2(10g2E 2) = 4 and V2(10g2 ) = 3. Since 3 = v2(L2(1, X)) 
V2 (h+) + V2 (1g2 E), we have V2 (h+) = 0. 
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Part (a) can also be proved as follows using quadratic forms (in fact, this was our 
original proof). The principal cycle for the quadratic form x2 _-py2 has even length, 
since the fundamental unit 6 has positive norm. Halfway through the cycle is an 
ambiguous form ax2 +fxy+_yy2 with a = ?2. This means that ?2 is represented by 
the original form: ?2 = x-py2. Congruences exclude -2. Moreover, ( yyp)2 = 

2e, which yields a = (x2 + py2)/2 = x2- 1 and a-1 = x2-2 = py2. The proof 
now proceeds as above. 

Since many modern readers might be somewhat unfamiliar with quadratic forms, 
we now restate and justify what we just did in terms of the equivalent statements 
for continued fractions (and we apologize to the first author). First we need the 
following lemma. Surely it is well known, but since we did not find a reference we 
prove it. 

Lemma. Let d > 1 be squarefree, let d/ = [ao; a1,..., an, 2ao] be the continued 
fraction expansion of v, let Pm/qm = [ao, ..., am] be the mth convergent, and let 

P-i = 1 and q-1 0. Let e = Pn + qnXv1 be the fundamental unit of ?Q(v'd). Then 

Pn-r + qn-rv /- (d iy+ 

Pr- -qr-iv' 

for 0 < r < n +1. 

Proof. The case r = 0 is the definition of e. It suffices to prove that 

Pn-r + qn-r\d _ Pn-r-1 + qn-r-lVd 

Pr-l -qr-lfd- Pr -qr NF 

for 0 < r < n, which is equivalent to the pair of equations 

Pn-rPr - qn-rqrd + Pn-r-lPr-1 - qn-r-lqr-ld = 0, 

qn-rPr - Pn-rqr + qn-r-lPr-1 - Pn-r-lqr-i = 0. 

The case r = 0 is equivalent to 

v'd = (W(d + ao)Pn + Pn-l)/((V/d + ao)qn + qn-i), 

which is well known [9, p. 114]. Assuming that the case r for the first equa- 
tion has been proved, we use Pn-r = an-rPn-r- + Pn-r-2 and similarly for 

qn-ri Pr+1, qr+1, to rewrite the first equation as 

(an-rPn-r-1 + Pn-r-2)Pr - (an-rqn-r-1 + qn-r-2)qrd 

+Pn-r-l(Pr+l - ar+lpr) - qn-r-l(qr+l - ar+lqr)d = 0. 

Using the fact that ar+l = an-r and canceling the appropriate terms yields the 
first equation with r + 1 in place of r. The second equation is treated similarly. Lii 

We now return to the case p _ 7 (mod 16) Since the fundamental unit e = 
a + bVp3 has positive norm, the value of n in the lemma must be odd. Letting 
r = (n + 1)/2 and x = Pr-i, Y = qr-1, we have 

x + Y /- 
x -y V 

Therefore the primitive ideal (x + yVp) must be a product of ramified primes. Since 
only the primes above 2 and p ramify, we have ? (x2 _-py2) = 1, 2, p, 2p. But 1 is not 
possible since r - 1 < n. Since x2 - py21 < p, we must have x2 _ py2 = ?2 = 2 (the 
last equality obtained because of congruences mod 8). Moreover, multiplying the 
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numerator and denominator of the above equation by x + y,/p3 yields (x + yVp)2 
2e. This justifies the steps used in the second proof above. 

(b) By Theorem 1, we have 3= v2(L2(1, X)) =v2(h+) + v2(10g2 C). Since three 
primes divide the discriminant of Q(/in), 41h+, so 21h+. Therefore V2 (10g2 c) < 2. 

If a is even, then it is easy to see that 41a and hence -pqb2 -- 1 (mod 16). 
Therefore 62 = a2 + pqb2 + 2ab pq_ -1 + 2ab pq (mod 16), So 10g2(C2) 0 

(mod 8). Therefore V2 (g2) 2, and we have equality. It follows that v2(a) 2 
and also v2(h+) = 1. Moreover, V2(10g2 =) 2 implies that B = 2ab _ 8 (mod 16). 
Note that A _-1 (mod 16). 

If a is odd, then we must have 41b, hence a2 1 (mod 16). Therefore 62 

1 + 2ab pq (mod 16), SO V2(10g2 >) ? 2. Therefore we have equality and v2(b) = 2, 
v2(h+) = 1. Also, A 1 (mod 16) and B = 8 (mod 16). 

Since v2(A2 - 1) v2(B2) = 6 and we already have A I1 (mod 16), we have 
A -?31 (mod 64). Lii 

We now systematically examine the cases where A- 1 and the zero, if it 
exists, is non-trivial. We first treat the case where m is even, since then x(2) = 
Xw-1(2) = 0, so the Euler factors disappear in the expressions for L2 (1,X) and 
L2 (, X). Therefore 

V2(L2 (1, X)) = V2(h)+ V2 (log2 6)- 2 
in this case. 

Theorem 3. If m = 2p with p _ 7 (mod 16), then 
5 

v2(h+) -0, v2 (log2 C) - v2(h-) 2, L2 (s,x) has no zero in 22 2 

a _ 15 (mod 128), b 4 (niod 8). 

Proof. v2(h-) 2 by [5, Thm. 4 and p. 596]. Therefore v2(bo) = 1. By Theorem 
1, L2(s,X) has no zero in Z2 and v2(L2(1,X)) = 2. 

We have (a + 1)(a - 1) = 2pb2. Since a must be odd and b must be even, 
(a + 1)/2 is a square times 1, 2, p, or 2p. The first and last on this list would imply 
that 6 E CQ(2p), so 2 and p remain. If (a + 1)/2 = pr2, then (a - 1)/2 = 2s2, 
so pr2 - 2s2 = 1, which is impossible mod 8. Therefore (a + 1)/2 = 2r2 and 
(a - 1)/2 = ps2, so 2r2 _ ps2 = 1. Since 2 is a square modulo each prime factor 
of s, we have s ?1 (mod 8), hence S2 1 (mod 16). It follows that r 2 
(mod 4) and a 4r2 _ 1=_ 15 (mod 128). This implies that b 4 (mod 8) 
and V2 (lg2 6) =2 Since 2 = v2 (L2 (1, X)) = V2 (h+) + V2 (1og2 ) -2 we have 
V2(h+) =0. LI 

Theorem 4. Suppose m = 2p with p _ 9 (mod 16). Then V2(h-) > 2. 
1. If v2(h-)= 2 then Norm 6 -1 and 

1 
V2 (h+) = 2, V2 (1og2 6) = -2 L2 (s X) has no zero in Z2, 2' 

a _ ?1 (mod 8), b _ 1 (mod 4). 

2. If v2(h-)=3 then 
1 1 

V2(h+) - 1, -v2 (a - 1) = v2(b) = v2(1og26C) - = 
~V2(03- 1) + 2 >3. 

2 2 
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3. If v2(h-) > 4, then 

V2 (h+) = 1, V2 (10g2 ) =- V2(0) = V2(h-)-3 > 1, 

a _ 17 (mod 128), b 4 (mod 8). 

Proof. By [5, Thm. 1 and p. 596], v2(h+) 2. The valuation of h+ therefore 
depends on the sign of the norm of 6. 

Suppose Norm(e) = +1. Note that a2 - 2pb2 = 1 implies that a is odd and b is 
even. If (a + 1)/2 = 2r2 and (a - 1)/2 = ps2, then 2r2 _ ps2 = 1, so 2 is a square 
mod all prime divisors of s. As in Theorem 3, we find that S2 1 (mod 16) and 
r2 _ 5 (mod 8), which is impossible. Therefore (a+ 1)/2 = pr2 and (a-1)/2 = 2s2, 
and pr2 -2s2 1. It follows that s is even, hence a = 1 + 452 1 (mod 16). This 
implies that b -0 (mod 4), SO V2(lg2 6) > 2- 

As in Theorem 3, if v2(h-) = 2 then L2(s, X) has no zero in Z2 and v2(L2(1, X)) 
2, so 2 = v2(h+) + v2(10g2 e)- 2. Since 4 0 h+, we have v2(h+) > 1, hence 
V2(10g_26) < 32. Rom the above we see that we must have Norm(e) -1 (this 
could also be obtained from [8, Thm. 2 (i) and Thm. 5] or [5, Thm. 3 and Prop. 
2]). Since a and b must be odd and c2 = A + B2p = 2a2 + 1 + 2ab2p, we 
have A -3 (mod 16) and B _ 2 (mod 4). Therefore 62 - 1 + 2 2p (mod 4), 
SO v2(log (62)) - 32 and v2(1ogC) = I. It follows that in this case we are forced to 
have v2(h+) = 2 (this also follows from v2(h+) = 2). Since a2 - 2pb2 -1, we 
see that -1 is a square modulo b, so b _ 1 (mod 4). Moreover, a2 = 2pb2 -1 =1 

(mod 16) yields a- ?1 (mod 8). 
If v2(h-) > 3 then t2 - 2pu2 =-2 has an integral solution by [5, Thm. 3 and 

Prop. 2 (3)]. By [5, p. 600], Norm(e) = +1, SO v2(h+-) = v2(h+/2) = 1. 
If V2 (h-) > 4, then Theorem 1 implies that v2 -1) = 0 and v2 (L2 (1, X)) = 3. 

Therefore V2(10g2 6) = 2. The above implies that b - 4 (mod 8). Since a2 
2pb2 + 1 33 (mod 256), and since a -1 (mod 16), we have a _ 17 (mod 128). 

If v2(h-) = 3, then 4 < v2( -1) + 3 = v2(L2(1, X)) = + V2(10g2 ). Since 
v2(a-1) = 2v2(b), we have V2(10g2 C) = V2(b) + 2I 

Theorem 5. Suppose m = 2pq with p ?3 (mod 8) and q- ?3 (mod 8). 

1. If p-q _ 5 (mod 8) then 

V2 (h+) = 2, V2 (1g2 6) = Norme = -1, V2(h-) = 2, 2' 

L2(s,X) has no zero in Z2, a ?1 (mod 8), b -1 (mod 4). 

2. If p _ 3 (mod 8) and q 5 (mod 8), then 

3 
v2(h+) 1, v2(10g2c) -, v2(h-) = 2, L2(s,X) has no zero in Z2, 

2 

a ?11 (mod 32), b_ 2 (mod 4). 

3. If p _ q 3 (mod 8) then v2(h-) > 3 and v2(h+) = 1. If v2(h-) = 3 then 

1 1 
3 < -v2 (a - 1) =v2 (b) =v2 (10g2 6) - - =V2(03 - 1) + 2. 

-2 2 
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If V2 (h-) > 4, then 

2 = V2 - (a-1) = v2 (b) = V2 (1og2 E)- ' 2 2 

Proof. Consider first the case where p -q _ 5 (mod 8). Suppose a2 - 2pqb2 = +1. 
Then a is odd and b is even. If (a + 1)/2 = 2pr2 and (a - 1)/2 = qs2, then 
2pr2 _ qs2 = 1, which is impossible mod 8. If (a + 1)/2 = pr2 and (a - 1)/2 = 2qs2, 
then pr2 - 2qs2 = 1, which is again impossible mod 8. If (a ? 1)/2 = 2r2 and 
(a?T 1)/2 = pqs2, then 2r2 -pqS2 = ?1, which implies that ?2 is a quadratic residue 
mod p, which is not the case (of course, we could switch the roles of p and q in the 
above, with similar results). The remaining possibilities imply that E (Q(/2pq), 
so e must have negative norm. Therefore a2 - 2pqb2 -1, which implies that b 
is odd. Consequently, a2 1 (mod 16), so a I1 (mod 8). Since -1 is a square 
modulo each prime factor of b, we have b -1 (mod 4). Since E2 =A + B 2pq with 
A _ 3 (mod 16) and B _ 2 (mod 4), we obtain V2(0g2 ) = V2(10g2(C2)) 21 
By [10, p. 191], we have v2(h-) -2. Therefore L2(s,X) has no zero C- E Z2 and 
2 = v2 (L2 (1, X)) = v2 (/h+) + v2 (log2 e)- 2. Therefore v2(h+) = 2. 

If p _ 3 (mod 8) and q _ 5 (mod 8), then v2(h-) = 2 by [10, p. 191]. Therefore 
L2 (s, X) has no zero /3 E Z2 and 2 = v2 (L2 (1, X)) = v2 (h+) + v2(log2 e) Since 
a2 - 2pqb2 = 1, we have a odd and b even. The possibilities (a + 1)/2 = qr2 
and = 2qr2 are easily eliminated by congruences mod 8. If (a ? 1)/2 = 2r2 and 
(a F 1)/2 = pqs2, then 2r2 - pqS2 = ?1 implies that ?2 is a quadratic residue 
mod q, which is not the case. If (a + 1)/2 = 2pr2 and (a - 1)/2 = qs2, then r 
and s are odd and b = 2rs -2 (mod 4). Also, a =-1 + 4pr2 11 (mod 32). If 
(a + 1)/2 = pr2 and (a - 1)/2 = 2qs2, then again r and s are odd and b = 2rs- 2 
(mod 4). Also, a = 1 + 4qs2 -11 (mod 32). Therefore V2(1og2 E) 2. It follows 
that v2(h+) = 1. 

If p q _ 3 (mod 8), then v2(h-) > 3 by [10, p. 191]. We will show below that 
v2(h+) = 1. 

If v2(h-) > 4 then V2(bo) > 3, so Theorem 1 implies that 3 = (L2(1,X)) 
5 

V2(h+) + V2(1og2 E)- V2(log2 E) + 2. Therefore V2(o1g2) 25 

If v2(h-) 3 then 4 < v2(/ -1) + 3 v2(L2(1, X)) = v2(10g2 6) + 2 Therefore 

V2(10g2 E) 
> 2 

In all cases we have a odd and b even. The possibilities (a + 1)/2 = pr2, = 2r2, 
and = 2pr2 are eliminated by congruences mod 8 and the fact that 2 is a quadratic 
nonresidue mod p (and similarly with q in place of p). Therefore (a + 1)/2 = pqr2 
and (a - 1)/2 = 2s2. This implies r is odd and s is even. Therefore a =1 + 4s2 1 
(mod 16) and hence b 0 (mod 4). This implies that V2(1og2 E) > - SO we have 
equality when v2(h-) > 4. In general, since (a + 1)(a - 1) = 2pqb2 and a + 1 - 2 
(mod 16), we have 2 V(a-1) V2 (b) V2(log2 e)- v2 -1) + 2. 

It remains to show that v2 (h+) = 1. This follows from the work of Redei and 
Reichardt [11]; for the convenience of the reader, we reproduce their argument, 
adapted to the present situation. In the case v2(h-) > 4, we note that the desired 
result follows from V2 (1og2 E) > 5 plus the fact that 2 1h+, so we only need to consider 
the case v2(h-) = 3. However, this restriction does not seem to be useful, and we 
consider the general case. The maximal unramified (including at oo) elementary 2- 
extension of K = Q( 2pq) is K2 = Q(V2, pq), so the 2-class group of K is cyclic. 
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Suppose 41h+. Then there is a unique unramified extension K4 of K2 that is cyclic 
of degree 4 over K. Moreover, Gal(K4/Q) is D4, the dihedral group of order 8. Let 
I C Gal(K4/Q) be the inertia group for some fixed prime p of K4 above p. Then 
In Gal(K4/K) = 1. Since p has ramification degree 2 in Q(pq)/IQ and in K4/Q, it 
is unramified in K4/Q (pq), so InGal(K4/Q (p-q)) = 1. Therefore I must be one 
of the two subgroups /4 Gal(K4/K2) of order 2 contained in Gal(K4/Q(V'2)). In 
particular, I is not normal in Gal(K4/Q). Since I is normal in Z, the decomposition 
group for p, Z cannot, be Gal(K4/Q). It follows that Z fixes Q(vX2-), so p splits in 
Q(V2)/(Q. Since p 4 ?1 (mod 8), this is a contradiction. Therefore K4 does not 
exist and v2(h+) = 1. DG 

In [14], the following was proved. Suppose q = (2' + 1)/3 is prime. Let m = 6q. 
Then V2(3 - 1) > (n - 3)/2. The last part of the above theorem shows that this is 
an equality, since e = 2n+1 + 1 + 2(n+1)/2 6q. The conjecture that (2n + 1)/3 is 
prime infinitely often is discussed in [1]. 

The remaining cases where A- = 1 are of the form Q(X/m) with m -1 (mod 8). 
Therefore xw-1 (2) = 0, so the Euler factor disappears in the expression for L2 (0, X), 
but x(2) = 1, so the Euler factor (1 - x(2)/2) = 1/2 cancels the 2 in the numerator 
of the formula for L2(1, X). Therefore 

L2 (1,X) h= log2 E and v2 (L2 (1, X)) = v2 (h+) + v2 (10g2 e) 

in this case. 

Theorem 6. Let m p = 9 (mod 16). Then h+ is odd and v2(h-) > 2. Also, 
a -0 (mod 4), b -5 (mod 8), and V2(10g2 E) V2(a). 

1. If v2(h-) 2 then a -4 (mod 8), A 33 (mod 256), B _ 8 (mod 16), 
v2 (log2 e) 2, and L2 (s, X) has no zero in Z2. 

2. If v2(h-) 3 then V2G(3 -1) = v2(a)-3 > 1. 
3. If v2(h-) > 4 then v2(a) 3, A _ 129 (mod 1024), B -16 (mod 32), and 

v2(C) = v2(h-) -3 > 1. 

Proof. The fact that h+ is odd is standard. By [5, p. 598], v2(h-) > 2. Also, since 
p -1 (mod 8), a and b are integers. Moreover, a2 _ pb2 -1, so a -0 (mod 4). 
Therefore pb2 1 (mod 16), and b _ ?3 (mod 8). Since -1 is a square mod b, we 
must have b =1 (mod 4), so b -5 (mod 8). Since E2 = 2a2+1+2abp- 1+2ab p 
(mod 4a), v2 (10g2 E) = V2 (a). 

Assume V2 (h-) = 2. Then v2 (L2 (1, X)) = 2, by Theorem 1, SO v2 (a) v2 (log2 e) 

2. The congruences for A and B follow immediately from the fact that a is 4 
times an odd number, hence a2 -16 (mod 128). 

Now assume v2(h-) = 3. Then there is a zero /3, and v2(3 - 1) + 3 = v2(a) = 
v2(10g2 e) = v2(L2(1, X)) > 4. 

Finally, if v2(h-) > 4 then v2(L2(1, X)) = 3, by the corollary to Theorem 1. This 
implies that v2 (a) = V2 (10g2 e) = 3, which yields the desired results. a 
Theorem 7. Let m = pq with p _ q ? ?3 (mod 8). 

(a) If p- q -3 (mod 8) then v2(h-) 2, v2(h+) = 0, a 23 (mod 64), b- 4 
(mod 8), v2 (10g2 e) = 2, and L2 (s,X) has no zero in Z2- 

(b) If p- q -5 (mod 8), then V2(h-) > 3. 
1. If v2(h-) 3, then v2(h+) > 1, 2v2(B) - 1 = v2(A - 1) > 5, and 
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2. If v2 (h-) > 4 then v2 (h+) 1, v2 (3) = v2 (h-) -3 > 1, V2 (10g2 ) = 2, 
A _ 33 (mod 256), and B 8 (mod 16). 

Remark. In part (b)(1), v2(h+) is not constant. For example, if m = 65 then 
h- = 8 and h+ = 2, and if m = 5 x 461 then h- = 24 and h+ = 16. 

Proof. (a) a2 _ pqb2 1 implies a is odd and b is even. Therefore we may assume 
(by switching p and q if necessary) that (a + 1)/2 = pr2 and (a - 1)/2 = qs2. This 
yields pr2 qs2 = 1, hence r -2 (mod 4) and s 1_ (mod 2). Therefore a 
-1 + 2pr2 23 (mod 64). Also, b = 2rs _ 4 (mod 8). Therefore v2(0og2 e) = 2. 
By [10, Prop. 4], v2(h-) = 2, so L2(s, X) has no zero in Z2 and v2(h+)+v2(10g2 e) 

V2 (L2 (1, X)) = 2. Therefore V2 (h+) = 0. 
(b) By [10, Prop. 4], v2(h-) > 3. If v2(h-) = 3 then L2(s,x) has a zero /3 _ 1 

(mod 2). We have 4 < v2 (,l- 1) + 3 = V2 (1og2 E) + V2 (h+). If V2 (h-) > 4 then 
V2 (1og2 E) + V2 (h+) = v2 (L2 (1, X)) = 3 and _= 0 (mod 2). 

If e has negative norm, then a2 _ pqb2 -1, so a 0 (mod 4), which implies 
that A 1_ (mod 32). Since A2 - pqB2 1, we obtain B _ 0 (mod 8), hence 
v2(10g2 e) > 2. Also, if Norm e -1 then h+ = h+. Since 2 h+, we have v2(h+) > 
1. In the case that v2(h-) > 4, we therefore obtain v2(10g2 e) - 2 and v2(h+) - 1. 

If e has positive norm, then a2 _ pqb2 = +1, so a is odd and b _ 0 (mod 4). 
We may assume (a + 1)/2 = pr2 and (a - 1)/2 = qs2, which yields pr2 _ qs2 = 1. 
Therefore p is a square mod q (and q is a square mod p), so 41h+ (see [5, p. 596]). 
Therefore v2(h+) > 1. Again in the case that v2(h-) > 4, we obtain v2(10g2 e) 2 
and v2(h+) = 1. 

When v2(10g2 e) = 2, in both cases (NE = +1 and NE -1) we have B 8 
(mod 16), so A2 65 (mod 512). Therefore A ?33 (mod 256). Since A = 2a2- 
NE = 2pqb2 + NE 1 (mod 32) in both cases, we obtain A 33 (mod 256). D] 

Finally, for completeness, we list what happens when A- 0. The proofs, which 
we omit, are very similar to those given above. Note that in this case we have both 
V2(bo) = 0 and v2(L2(1, X)) = 1, so we expect congruences for h-, h+, and e. 

In part (2), we consider E3 instead of E, since e is not necessarily in E p]. Note 
that v2 (10g2 (E3)) = v2 (10g2 e), so there is little effect on our other calculations. 

Theorem 8. Suppose /v- = 0. 

1. If m = p- 3 (mod 8), then v2 (h-) = 0, V2 (h+) = 0, v2 (log2 e) = 1, a 2 
(mod 4), A = 7 (mod 64), B = 4 (mod 8). 

2. If m = p -5 (mod 8), then v2(h-) = 1, v2(h+) = 0, V2(10g2 6) =1 If 
E3 =a' + b'p and 6 = A' + B'p, then a' _ 2 (mod 4), b' 1_ (mod 4), 
A' 9 (mod 64), B' _ 4 (mod 8). 

3. If m = 2p with p _ 3 (mod 8), then v2(h-) = 1, v2(h+) = 0, V2(10g2 E) 2 3 

a--5 (mod 32), b_ 2 (nod 4). 
4. If m = 2p with p 5 (mod 8), then V2 (h-) = 1, V2 (h+) = 1, V2 (1og2 E) 2 n 

a _ 1 (mod 2), b-1 (mod 2). 

3. NUMERICAL RESULTS 

Using PARI, we calculated v2 (h+ log2 e) and v2 (h-), and consequently v2(/3 -1) 
and v2 (/3), and obtained the following data. For example, the 311 in the first row 
of the first table means that there are 311 primes p 9 (mod 16) less than 105 
such that there is a zero /3 with v2(/ -1) = 0 for the 2-adic L-function of the 
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(Q(f2p) with p _ 9 (mod 16) (cf. Theorem 4) 
v2C 3-1) no / 0 1 2 3 4 5 6 > 7 

0<p< 105 601 311 160 74 26 12 7 3 2 
105 <p<2x 105 519 252 128 82 28 15 10 3 4 

2x 105 <p<3x 105 489 251 139 63 28 12 7 3 1 
3x 105 <p<4x 105 498 243 106 56 28 11 10 6 3 
4x 105 <p<5x 105 477 236 123 74 37 10 10 3 4 

Total 2584 1293 656 349 147 60 44 18 14 

v2(0) 0 1 2 3 4 5 6 > 7 
O<p`105 284 155 79 41 24 12 0 0 

105 <p<2x 105 270 134 50 30 13 20 5 0 
2x 105 <p<3x 105 253 132 58 31 13 12 5 0 
3x105<p<4x105 220 137 51 32 10 6 3 4 
4x 105 <p<5x 105 261 120 59 30 12 6 5 4 

Total 1288 678 297 164 72 56 18 8 

Q(6/q) with q 3 (mod 8) (cf. Theorem 5, part (3)) 
V2 (3- 1) s ?0 1 2 3 4 5 6 >7 

3 < q < 105 1192 582 329 144 76 39 21 25 
105 < q < 2 x 105 1052 493 271 128 67 30 15 30 

2x 105 < q < 3 x 105 1005 493 223 147 62 41 23 5 
3x 105 <q<4x 105 978 523 250 95 70 25 22 12 
4x 105 < q < 5 x 105 976 456 249 143 57 41 14 13 

Total 5203 2547 1322 657 332 176 95 85 

v2(03) 0 1 2 3 4 5 6 >7 
3<q<10 I 1216 575 304 158 87 47 21 0 

105<q<2x105 1034 521 260 144 61 24 35 7 
2x105<q<3x105 994 497 262 118 64 37 17 10 
3x105<q<4x105 997 492 258 119 63 30 9 7 
4x105<q<5x105 973 474 243 126 73 27 15 18 

Total 5214 2559 1327 665 348 165 97 42 

corresponding quadratic field Q(2/p). Note that this number also gives the total 
number of examples of v2C(3) > 0 (i.e., the sum of the first row of the second part 
of the table, omitting the first entry). 

These tables indicate that, for the fields considered such that /3 exists, v2 (/3-1) 
i > 0 with probability approximately 2-(i?+). Similarly, v2(/3) = i > 0 with 
probability approximately 2-(i+1). In the families where /3 does not always exist, 
approximately half of the fields are such that /3 exists. 

The 2-parts of the class groups of the imaginary quadratic fields considered are 
either cyclic (2j) with j > 2 (for Q(?--2p) and Q( /=-p)) or of the form (2) x (2i) 
with j > 2 (for Q(? +-6q) and Q(=-5p). This follows from [11]). The philoso- 
phy of the Cohen-Lenstra heuristics [3], extended to the present situation, would 
predict that the occurrence of a group as the 2-part of the class group is inversely 
proportional to the size of its automorphism group. For the case where the 2-part 
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Q( p) with p -9 (mod 16) (cf. Theorem 6) 

v2( i-1) no 0 1 2 3 4 5 6 > 7 
0<p <105 595 309 127 88 43 15 9 7 3 

105 <p<2x 105 522 258 128 69 35 14 9 3 3 
2x 105 <p<3x 105 504 241 128 52 34 19 11 3 1 
3x 105 <p<4x105 463 256 122 63 27 19 6 3 2 
4 x 105 <p < 5 x 105 497 239 119 64 34 12 5 2 2 

Total 2581 1303 624 336 173 79 j40 18 11 

V2(,3) 0 1 2 3 4 5 6 
0<p<105 292 153 93 35 22 5 1 

105 <p < 2 x 105 261 139 64 25 15 8 7 
2x 105 <p<3x 105 248 132 55 28 9 9 8 
3x 105 <p<4x 105 242 128 72 29 17 7 3 
4x 105 < p < 5 x 105 238 123 58 29 13 6 10 

Total 1281 675 342 146 76 35 29 

_ Q( 5p) with p 5 (mod 8) (cf. Theorem 7(b)) 
v2( 3-1) 0 1 2 3 4 5 6 >7 

5 <p<105 1192 620 306 148 58 40 14 20 
105 <p<2x 105 1061 513 275 136 68 29 17 13 

2x 105 <p<3x 105 1001 510 270 91 69 36 17 18 
3 x 105 <p < 4 x 105 1004 492 235 137 49 25 15 16 
4 x 105 <p< 5 x 105 940 475 254 122 53 30 13 14 

Total 5198 2610 1340 634 297 160 76 81 

v2(/3) 0 1 2 |3 |4 5 6 > 7 
5<p<105 1206 601 300 152 76 44 18 1 

105<p<2x105 1051 526 276 120 85 27 17 10 
2x105<p<3x105 1011 487 248 136 64 29 23 14 
3x105<p<4x105 969 458 253 153 81 32 17 10 
4x105<p<5x105 961 463 228 124 66 35 16 8 

Total 4898 2535 1305 685 372 167 91 43 

of the class group is cyclic of order 2i, the automorphism group has order 2i- . 
Combining this with the above, we find that this extension of the Cohen-Lenstra 
heuristics to these cases is equivalent to the statement that v2(f) = i > 0 with 
probability 2-(i+1). 

The elements of the automnorphism group of (2) x (2i) with j > 2 can be 

represented by matrices (a 1) where a 1, b e Hom(Z/2Z, Z/2j;), c e 

Hom(Z/2j;, Z/2Z), and d e Aut(Z/2jZ). I'herefore this automorphismn group 
has order 2j+4? Again we find that the extenision of the Cohen-Lenstra heuristics 
is equivalent to v2(Q) = i with probability 2-(i?1). 
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