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ZEROS OF 2-ADIC L-FUNCTIONS AND CONGRUENCES
FOR CLASS NUMBERS AND FUNDAMENTAL UNITS

DANIEL C. SHANKS, PATRICK J. SIME, AND LAWRENCE C. WASHINGTON

ABSTRACT. We study the imaginary quadratic fields such that the Iwasawa
Ag-invariant equals 1, obtaining information on zeros of 2-adic L-functions
and relating this to congruences for fundamental units and class numbers.

This paper explores the interplay between zeros of 2-adic L-functions and congru-
ences for fundamental units and class numbers of quadratic fields. An underlying
motivation was to study the distribution of zeros of 2-adic L-functions, the basic
philosophy being that the location of the zeros causes restrictions on the 2-adic be-
havior of the class numbers and fundamental units of real quadratic fields. Though
the predicted restrictions involved the unit and class number together, numerical
computations (we used PARI) revealed definite patterns for the unit and class num-
ber separately, which we were then able to prove. Several of these congruences are
classical, but some of them seem to be new.

We use the information obtained to study the distribution of the zeros, in partic-
ular their distances from 1 and 0. In a previous paper [14], one of us showed that,
if (2P + 1)/3 is prime infinitely often, then it is possible to have zeros of 2-adic L-
functions arbitrarily close to s = 1. Recently, Morain [7] showed that (2!23%1 +1)/3
is prime, which yields a 2-adic L-function with a zero 3 satisfying |3 — 1]y = 27619
(see the discussion following Theorem 5).

In previous papers [12], [15], one of the present authors studied zeros of 3-adic
L-functions in a somewhat similar approach. However, the advantage of using 2-
adic L-functions for quadratic fields Q(y/m) is that not only is the number of zeros
bounded by A, the Iwasawa invariant for the cyclotomic Zy-extension of Q(y/—m),
but also there is a simple formula for A~ due to Y. Kida [6] and B. Ferrero [4]. This
allows us to keep the number of zeros under control. In fact, throughout the present
paper we restrict ourselves to the case A~ = 1, so we are dealing with at most one
7ero.

1. 2-ADIC L-FUNCTIONS

Let x be the non-trivial Dirichlet character associated to the real quadratic field
Q(y/m), where m is taken to be squarefree. The 2-adic L-function Ls(s, x) satisfies
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B /w*TL
Lg(l —-n, X) =—(1- Xw_"(2)2”'_1)_n’_:;_

for all n > 1, where w is the non-trivial character mod 4 and B, , -~ is a general-
ized Bernoulli number (for more on p-adic L-functions, see [13]). The 2-adic class
number formula states that

Lo(1,x) = (1-

X(Q)) 2h* log, €
2 vd o
where hT, ¢, and d are the class number, fundamental unit, and discriminant of
Q(y/m), and log, is the 2-adic logarithm. Iwasawa has shown that there is a power
series g(T) = g(T, x) € Z2[[T]] such that

La(s,x) =29((1 +4)° - 1).
The Weierstrass preparation theorem says that there is a factorization

9(T) = P(T)U(T)

where P(T) is a distinguished polynomial and U(T) is invertible in Zs[[T]]. The
degree of P(T') is A~, the Iwasawa invariant for the cyclotomic Zy-extension of
Q(v/—m). Note that Q(v/—m) corresponds to the character xw™!.

Proposition (Kida [6], Ferrero [4]). Let m > 4 be squarefree and let A\~ be the
Twasawa invariant for the cyclotomic Zo-extension of Q(v/—m). Then

1
=1t Y Lo

plm
p odd

where [n]y = 292(") is the largest power of 2 dividing n.
Corollary. (a) A= = 0 if and only if m = p or 2p, where p = +3 (mod 8) is
prime.
(b) A= =1 if and only if m or m/2 is one of the following:
1. p, with p = £7 (mod 16)
2. pq, with p, ¢ = +£3 (mod 8).

Let g(T) = by + byT + boT? + ---. Recall that A\~ is the index of the first
coefficient b; that is not divisible by 2. Therefore A~ = 0 if and only if 2 { by, and
A~ =1if and only if 2 | by and 21 b;. Note that

2by = 29(0) = L2(0,x) = —(1 — xw™ " (2)) By yo-15

so bg = 0 if and only if xw™!(2) = 1, which happens if and only if m = 7 (mod 8).
In this case we say that La(s, x) has a trivial zero.

Let h™ be the class number of Q(y/—m). It is well-known that A~ = —B; ,,,-1,
0

1 _ _
by = 5(1 —xw 1 (2)h:
We can also consider a power series f(T') = g(ﬁf —1)=ap+a1T+---. Then
Lo(s,x) = 2f(1+4)'7° = 1)

and ag = 3L2(1,x). Since T 127 — 1 is an invertible change of variables over
Zo, we find that A~ is the index 7 of the first odd coefficient a;.
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Theorem 1. Assume A\~ = 1.
1. va(bo) > 1 and va(L2(1,x)) > 2.
2. Lo(s,x) has a zero B € Zs if and only if va(bg) > 2, and if and only if
v2(L2(1,x)) > 3.
3. If B exists, then va(B — 1) > 1 if and only if va(by) = 2, and v2(B8) > 1 if and
only if v2(L2(1,x)) = 3.
4. If B exists, then va(La(1,x)) = v2(8 — 1) + 3 and v2(by) = v2(8) + 2.

Remark. Let ¢ be the quadratic character corresponding to Q(+/2). It follows from
the work of Childress and Gold [2] that if A= =1 and Ls(s, x) has no zero in Zs,
then the zero appears one step up (if 2 1 m) the Zs-extension of the quadratic field
Q(y/m); namely, La(s,%x) = 2g(—(1+4)* — 1) has a zero. This can be seen in the
proof below, since in this case (1 4+ 4)° + 1 = —« has a solution s = .

Proof. The assumption that A~ = 1 yields (1). We have deg P(T) = A\~ =1, so
9(T) = (T'—a)U(T) with « € 2Z2. Since U(0) € Z5, it follows that va(a) = va(bo).
If Ly(B,x) = 0, then (1+4)° —1 = @, so @ = 0 (mod 4), hence vz(by) > 2.
Moreover, v2(a) = 2 if and only if 8 is odd. Suppose now that ve(bg) > 2. Then
B =logy(1 + a)/logy(1 +4) is a root of La(s,x). The same argument applied to
f(T) completes the proofs of (2) and (3).

To prove (4), let 8 and «a be as above. Then

Ly(1,x) = L2(1,x) — L2(B, x)
=2g(4) — 29()
=2(b1(4—a) + (4> —a®) + )
—2(4—a)(by +ba(4d+a)+ )
=2(4—a) (mod4(4-a)),

since by is odd and @ =0 (mod 4). But a —4 = (1 +4)((1+4)~ 1 -1)=4(8-1)
(mod 8(8 — 1)), so the first part of (4) follows. The second part follows from the
same argument applied to f(7). O

The above theorem expresses quantitatively the principle that a zero close to 1
causes Lo(1, x) to be small. This can happen only if either h* or log, € is divisible
by a high power of 2. On the other hand, if A~ is divisible by a high power of 2
then B8 € 2Z», which of course says that if Ly(0,x) is small then 3 is forced to be
near 0. Theorem 1 has the following interesting consequence.

Corollary. Assume A\~ = 1. Ifva(bg) > 3 then va(La(1,x)) = 3. If va(La(1, X)) >
4 then va(bg) = 2.

In particular, this implies, in the case A= = 1, that when h™ is divisible by a
high power of 2, or if yw™!(2) = 1, then v2(h™) and vz(log, €) are bounded. Also,
if vo(h™) or va(log, €) is large, then vy(h™) is bounded (as long as the Euler factor
does not cause a trivial zero. In the next section, we investigate this phenomenon.
Our point of view is to start with vy(h™) and see what restrictions are imposed on
va(ht) and vy (log, €). Of course, we could similarly start with v (A1) + v2(log, €)
and study the restrictions imposed on vz (h~). In fact, in Theorem 4(2), Theorem
5(3), Theorem 6(2), and Theorem 7(b)(1), we have va(h™) = 3, but only inequalities
for what happens with va(h*) and v2(logs €). This is because the cause and effect
are reversed: h™ and e are causing the restriction vo(h™) = 3.
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2. CONGRUENCES

The above corollary implies that if va(by) > 3 then we have 2-adic restrictions
on h™ and e. In this section we investigate this phenomenon.

Throughout, p and ¢ will always denote primes. We let

h* = class number of Q(\/m),

h$ = narrow class number of Q(y/m),

h~ = the class number of Q(+/—m),

€ = a + by/m = the fundamental unit of Q(y/m),

€2 = A+ Bym.

Recall that h™ = h{ if € has norm —1, and A+ = h{ /2 if € has norm +1.

We will often need the fact that when e has norm +1,

V= \/3(a+1) " \/l(a— ).
2 2
In particular, {(a & 1) cannot both be of the form mr? or r? with r € Q, since
otherwise /¢ would be in Q(y/m).

Another fact we will use often is that if z = +1 (mod 2%/2) then wy(log, ) =
vo(z F 1).

We start with the case of a trivial zero, so by = 0. Since we must have m = 7
(mod 8), we have either m = p = 7 (mod 16) or m = pq with p = 3 (mod 8) and
g =5 (mod 8). The following result does not seem to be well-known; we did not
find it in the literature.

Theorem 2. (a) If m=p =7 (mod 16), then

va(h") =0, wa(logye) =3, wa(h™) =0,
a=8 (mod 16), b==43 (mod 8).

(b) If m = pq with p =3 (mod 8) and ¢ =5 (mod 8), then
va(hT) =1, va(logye) =2, A=431 (mod 64), B=8 (mod 16).

Remark. In part (b), v2(h™) is not constant. For example, when m = 15, h™ = 2
and when m =39, h~ = 4.

Proof. (a) The fact that h~ is odd is classical. We have (a + 1)(a — 1) = pb?. If
ged(a + 1, a — 1) = 2 then one of (a £1)/2 is a square and the other is p times
a square. Therefore /e = \/%(a +1)+ \/g(a — 1) € Q(y/p), which is impossible.
Therefore ged=1. If a — 1 = r2 and @ + 1 = s%p for integers r, s, then s2p —r? = 2,
which is impossible mod 8. Therefore a +1 =72 and a — 1 = s%p, so r? — s?p = 2.
Clearly r, s are odd. Since 72 = 2 modulo each prime factor of s, each such factor
must be =1 mod 8, so s = 1 (mod 8). Therefore a = 1+ s’p =8 (mod 16). Since
a’? — pb®> = 1, we must have b = £3 (mod 8). Therefore ¢2 = 2a% — 1 + 2ab,/p =
—1+16,/p (mod 32), so vy (log, €?) = 4 and vz (log, €) = 3. Since 3 = va(L(1,x)) =
va () 4 va(log, €), we have vo(ht) = 0.
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Part (a) can also be proved as follows using quadratic forms (in fact, this was our
original proof). The principal cycle for the quadratic form x2 — py? has even length,
since the fundamental unit ¢ has positive norm. Halfway through the cycle is an
ambiguous form o+ Bry+7yy? with @ = +2. This means that +2 is represented by
the original form: +2 = z?—py?. Congruences exclude —2. Moreover, (z+y,/p)* =
2¢, which yields a = (22 + py?)/2 = 2> — 1 and @ — 1 = 22 — 2 = py?. The proof
now proceeds as above.

Since many modern readers might be somewhat unfamiliar with quadratic forms,
we now restate and justify what we just did in terms of the equivalent statements
for continued fractions (and we apologize to the first author). First we need the
following lemma. Surely it is well known, but since we did not find a reference we
prove it.

Lemma. Let d > 1 be squarefree, let /d = [ag; a1, ..., an, 2a0] be the continued
fraction expansion of \/d, let py/qm = [ao, ..., am] be the mth convergent, and let
p_1=1andq 1 =0. Let € = p, + g,\/d be the fundamental unit of Q(~/d). Then
Dn—r + qn—'r\/g _ (_1)r+16
Pro1—@r1Vd
for0<r<n+1.
Proof. The case r = 0 is the definition of €. It suffices to prove that
Dp—r + Qn—r\/a _ _ Pn—r—1 + Qn—r—l\/(—i
Pr1—qr1Vd pr—qVd

for 0 < r < n, which is equivalent to the pair of equations

Pn—rDPr — Qn—'rqrd + Prn—r—1Pr—1 — Qn—r—lqr—ld = O’
Qn—rPr — Pn—rQr + Qn—r—1Dr—1 — Pn—r—1GQr—1 = 0.
The case r = 0 is equivalent to

Vd = (Vd + ao)pn + pn_1)/(Vd + a0)gn + Gn_1),

which is well known [9, p. 114]. Assuming that the case r for the first equa-
tion has been proved, we use pp,_, = An_rPrn_r_1 + Pn_r_2, and similarly for
Gn—ry Dr+1, Gr+1, to rewrite the first equation as

(an—rpn—r—l +pn—r—2)pr — (an—rQn—r—l + Qn—r—2)q'rd
+ pn—r—1(pr+1 - ar-‘,—lp'r) - Qn—r~1(QT+l - a'r-‘rlQ’r)d =0.

Using the fact that a,.+1 = an—, and canceling the appropriate terms yields the
first equation with r + 1 in place of r. The second equation is treated similarly. [

We now return to the case p = 7 (mod 16) Since the fundamental unit e =
a + b,/p has positive norm, the value of n in the lemma must be odd. Letting
r=(n+1)/2and £ =p,_1, y = gr—1, we have

TEWP _ .

T —y\/D
Therefore the primitive ideal (x4 y,/p) must be a product of ramified primes. Since
only the primes above 2 and p ramify, we have (2% —py?) = 1, 2, p, 2p. But 1 is not
possible since r — 1 < n. Since |22 — py?| < p, we must have 22 — py? = £2 = 2 (the
last equality obtained because of congruences mod 8). Moreover, multiplying the
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numerator and denominator of the above equation by z + y./p yields (z + y\/]ﬁ)2 =
2¢. This justifies the steps used in the second proof above.

(b) By Theorem 1, we have 3 = vo(L2(1, x)) = v2(h™1) + va(log, €). Since three
primes divide the discriminant of Q(y/m), 4|h{, so 2|h*. Therefore vy (log, €) < 2.

If a is even, then it is easy to see that 4|a and hence —pgb? = 1 (mod 16).
Therefore €2 = a® + pgb® + 2ab\/pqg = —1 + 2ab,/pq (mod 16), so logy(e?) = 0
(mod 8). Therefore v2(logs €) > 2, and we have equality. It follows that va(a) = 2
and also va(h') = 1. Moreover, vs(log, €) = 2 implies that B = 2ab =8 (mod 16).
Note that A = —1 (mod 16).

If a is odd, then we must have 4|b, hence a? = 1 (mod 16). Therefore € =
1+ 2ab,/pq (mod 16), so va(log, €) > 2. Therefore we have equality and vy (b) = 2,
vo(hT) =1. Also, A=1 (mod 16) and B =8 (mod 16).

Since vy(A? — 1) = v3(B?) = 6 and we already have A = £1 (mod 16), we have
A =431 (mod 64). O

We now systematically examine the cases where A\~ = 1 and the zero, if it
exists, is non-trivial. We first treat the case where m is even, since then x(2) =
xw™1(2) = 0, so the Euler factors disappear in the expressions for Ls(1,x) and
L(0, x). Therefore

1
vo(La(1, X)) = U2(h+) + vz (logy €) — 3
in this case.

Theorem 3. If m = 2p with p =7 (mod 16), then
va(ht) =0, wva(logye) = g, va(h™) =2, Ls(s,x) has no zero in Zs
a=15 (mod 128), b=4 (mod 8).

Proof. va(h™) =2 by [5, Thm. 4 and p. 596]. Therefore va(by) = 1. By Theorem
1, La(s, x) has no zero in Zy and va(La(1,x)) = 2.

We have (a + 1)(a — 1) = 2pb®. Since a must be odd and b must be even,
(a+1)/2 is a square times 1, 2, p, or 2p. The first and last on this list would imply
that /e € Q(v/2p), so 2 and p remain. If (a + 1)/2 = pr?, then (a — 1)/2 = 252,
so pr? — 2s® = 1, which is impossible mod 8. Therefore (a 4+ 1)/2 = 2r? and
(a —1)/2 = ps?, so 2r? — ps?> = 1. Since 2 is a square modulo each prime factor
of s, we have s = +1 (mod 8), hence s> = 1 (mod 16). It follows that r = 2
(mod 4) and a = 4r%> — 1 = 15 (mod 128). This implies that b = 4 (mod 8)
and vy(logye) = 5. Since 2 = va(La(1,x)) = va(h™) + va(logy€) — 3, we have
’Uz(h+) =0. O
Theorem 4. Suppose m = 2p with p =9 (mod 16). Then va(h™) > 2.

1. Ifva(h™) =2 then Norme = —1 and

va(ht) =2, wy(logye) = %, Lo(s,x) has no zero in Zs,
a==%1 (mod8), b=1 (mod4).
2. Ifva(h™) =3 then

va(ht) =1, %vg(a — 1) = va(b) = va(logy €) — % =u(f-1)+22>3.
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3. Ifva(h™) >4, then

) =1, vlogd) =2, w()=w(h)-321,

a=17 (mod 128), b=4 (mod 8).

Proof. By [5, Thm. 1 and p. 596], va(hd) = 2. The valuation of A" therefore
depends on the sign of the norm of e.

Suppose Norm(e) = +1. Note that a® — 2pb? = 1 implies that a is odd and b is
even. If (a +1)/2 = 2r? and (a — 1)/2 = ps?, then 2r? — ps% = 1, so 2 is a square
mod all prime divisors of s. As in Theorem 3, we find that s> = 1 (mod 16) and
r?2 =5 (mod 8), which is impossible. Therefore (a+1)/2 = pr? and (a—1)/2 = 2s?,
and pr? — 2s2 = 1. It follows that s is even, hence a = 1 +4s? = 1 (mod 16). This
implies that b= 0 (mod 4), so va(log, €) > 5.

Asin Theorem 3, if va(h™) = 2 then La(s, x) has no zero in Zy and va(La(1, x)) =
2, s0 2 = vy(h*) + vz(logye) — &. Since 4 | h{, we have va(hT) > 1, hence
va(logy€) < 2. From the above we see that we must have Norm(e) = —1 (this
could also be obtained from [8, Thm. 2 (i) and Thm. 5] or [5, Thm. 3 and Prop.
2]). Since a and b must be odd and €2 = A + By/2p = 2a? + 1 + 2ab/2p, we
have A = 3 (mod 16) and B = 2 (mod 4). Therefore €2 = —1 + 2,/2p (mod 4),
s0 vy (logy(€?)) = 2 and vy (loge) = 3. It follows that in this case we are forced to
have va(h™) = 2 (this also follows from vy(h{) = 2). Since a? — 2pb? = —1, we
see that —1 is a square modulo b, so b =1 (mod 4). Moreover, a* = 2pb* —1 =1
(mod 16) yields a = £1 (mod 8).

If va(h™) > 3 then t? — 2pu? = —2 has an integral solution by [5, Thm. 3 and
Prop. 2 (8)]. By [5, p. 600], Norm(e) = +1, so va(h*) = va(hd/2) = 1.

If v3(h™) > 4, then Theorem 1 implies that ve(8 — 1) = 0 and v2(Lo(1, %)) = 3.
Therefore vy(logy€) = 3. The above implies that b = 4 (mod 8). Since a® =
2pb? + 1 = 33 (mod 256), and since a = 1 (mod 16), we have a = 17 (mod 128).

If va(h™) = 3, then 4 < v3(B8 ~ 1) + 3 = va(L2(1,%)) = & + va(logy€). Since
v2(a — 1) = 2v3(b), we have va(logy €) = v2(b) + 3. O

Theorem 5. Suppose m = 2pq with p = £3 (mod 8) and ¢ = +3 (mod 8).
1. If p=q=5 (mod 8) then

va(hT) =2, wve(logye) = %, Norme = -1, we(h7) =2,
Lo(s,x) has no zero in Zy, a==£1 (mod8), b=1 (mod 4).
2. If p=3 (mod 8) and ¢ =5 (mod 8), then
ve(hT) =1, wy(logye) = g, va(hT) =2, La(s,x) has no zero in Zs,

a==%11 (mod32), b=2 (mod4).

3. If p=q=3 (mod 8) then va(h™) >3 and vo(h™) = 1. Ifva(h™) = 3 then

—~

=1)2(,3— 1)-1-2

N =

3.< guala— 1) =s(b) = va(logy ) -
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If va(h™) > 4, then

1 1
2= §v2(a — 1) = v3(b) = vy(logsy €) — 3

’Ug(ﬁ) = vg(h_) -3 > 1.

Proof. Consider first the case where p = ¢ =5 (mod 8). Suppose a? — 2pgb? = +1.
Then a is odd and b is even. If (a + 1)/2 = 2pr? and (a — 1)/2 = gs?, then
2pr? — qs% = 1, which is impossible mod 8. If (a+1)/2 = pr? and (a—1)/2 = 2¢s?,
then pr? — 2¢s?> = 1, which is again impossible mod 8. If (a £ 1)/2 = 27 and
(aF1)/2 = pgs?, then 2r2 —pgs? = £1, which implies that 42 is a quadratic residue
mod p, which is not the case (of course, we could switch the roles of p and ¢ in the
above, with similar results). The remaining possibilities imply that /¢ € Q(1/2pq),
so ¢ must have negative norm. Therefore a? — 2pgb® = —1, which implies that b
is odd. Consequently, a> =1 (mod 16), so a = &1 (mod 8). Since —1 is a square
modulo each prime factor of b, we have b = 1 (mod 4). Since €2 = A+ B+/2pq with
A =3 (mod 16) and B = 2 (mod 4), we obtain vz (log, €) = vo(logy(e?)) — 1 = 3.
By [10, p. 191], we have va(h™) = 2. Therefore Ly(s, x) has no zero § € Z, and
2 = v(La(1,x)) = va(ht) + va(logy €) — 5. Therefore vy(hT) = 2.

If p=3 (mod 8) and ¢ =5 (mod 8), then va(h~) = 2 by [10, p. 191]. Therefore
Ls(s, x) has no zero 8 € Zy and 2 = vy(La(1,%)) = va(h) + va(logy €) — 2. Since
a? — 2pgb?> = 1, we have a odd and b even. The possibilities (a + 1)/2 = ¢r?
and = 2¢r? are easily eliminated by congruences mod 8. If (a +1)/2 = 272 and
(a F 1)/2 = pgs?. then 2r2 — pgs? = £1 implies that. +-2 is a quadratic residue
mod ¢, which is not the case. If (a + 1)/2 = 2pr? and (a — 1)/2 = gs?, then r
and s are odd and b = 2rs = 2 (mod 4). Also, a = —1 + 4pr? = 11 (mod 32). If
(a+1)/2 =pr? and (a — 1)/2 = 2¢s?, then again 7 and s are odd and b = 2rs = 2
(mod 4). Also, a =1+ 4¢s? = —11 (mod 32). Therefore vs(log, €) = 2. It follows
that Ug(h+) =1.

If p=g=3 (mod 8), then va(h™) > 3 by [10, p. 191]. We will show below that
1)2(h+) =1.

If va(h™) > 4 then vy(bo) > 3, so Theorem 1 implies that 3 = v2(L2(1,x)) =
va(ht) + va(logy €) — & = vo(logy €) + &. Therefore vy (logy €) = 2.

If vo(h™) = 3 then 4 < ve(8— 1) + 3 = v2(La(1, X)) = v2(logy €) + 5. Therefore
vy(logy €) > L.

In all cases we have a odd and b even. The possibilities (a +1)/2 = pr?, = 2r?,
and = 2pr? are eliminated by congruences mod 8 and the fact that 2 is a quadratic
nonresidue mod p (and similarly with ¢ in place of p). Therefore (a + 1)/2 = pgr?
and (a—1)/2 = 2s2. This implies 7 is odd and s is even. Therefore a = 1+4s% =
(mod 16) and hence b = 0 (mod 4). This implies that va(log, €) > 2, so we have
equality when vy (h™) > 4. In general, since (a + 1)(a — 1) = 2pgb? and a + 1 = 2
(mod 16), we have Lva(a — 1) = va(b) = va(logy€) — 2 =wva(B—1) + 2.

It remains to show that vy(ht) = 1. This follows from the work of Rédei and
Reichardt [11]; for the convenience of the reader, we reproduce their argument,
adapted to the present situation. In the case vy(h™) > 4, we note that the desired
result follows from vy(log, €) > 2 plus the fact that 2|h*, so we only need to consider
the case vo(h™) = 3. However, this restriction does not seem to be useful, and we
consider the general case. The maximal unramified (including at oo) elementary 2-

extension of K = Q(v/2pq) is K> = Q(v/2, \/Pq), so the 2-class group of K is cyclic.
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Suppose 4|hT. Then there is a unique unramified extension K4 of K> that is cyclic
of degree 4 over K. Moreover, Gal(K4/Q) is Dy, the dihedral group of order 8. Let
I C Gal(K4/Q) be the inertia group for some fixed prime p of K4 above p. Then
INGal(K4/K) = 1. Since p has ramification degree 2 in Q(,/pq)/Q and in K4/Q, it
is unramified in K4/Q(,/pq), so INGal(K4/Q(,/pq)) = 1. Therefore I must be one
of the two subgroups # Gal(K4/K>) of order 2 contained in Gal(K4/Q(v/2)). In
particular, I is not normal in Gal(K4/Q). Since I is normal in Z, the decomposition
group for p, Z cannot, be Gal(K,/Q). Tt follows that Z fixes Q(1/2), so p splits in
Q(+v/2)/Q. Since p # +1 (mod 8), this is a contradiction. Therefore K4 does not
exist and ve(h*) = 1. O

In [14], the following was proved. Suppose ¢ = (2™ + 1)/3 is prime. Let m = 6q.
Then v2(8 — 1) > (n— 3)/2. The last part of the above theorem shows that this is
an equality, since € = 2**1 1 + 2(»+1/2, /6y, The conjecture that (27 + 1)/3 is
prime infinitely often is discussed in [1].

The remaining cases where A~ = 1 are of the form Q(y/m) with m = 1 (mod 8).
Therefore xw™1(2) = 0, so the Euler factor disappears in the expression for L, (0, x),
but x(2) = 1, so the Euler factor (1 — x(2)/2) = 1/2 cancels the 2 in the numerator
of the formula for Ls(1,x). Therefore

h* log, €

N and v (Lo(1, x)) = va(ht) + v2(logs €)

L2(1a X) =
in this case.

Theorem 6. Let m = p = 9 (mod 16). Then h't is odd and vo(h™) > 2. Also,
a=0 (mod 4), b="5 (mod 8), and va(log, €) = va(a).
1. If va(h™) = 2 then a = 4 (mod 8), A = 33 (mod 256), B = 8 (mod 16),
vo(logy €) = 2, and Lo(s,x) has no zero in Zs.
2. Ifvg(h™) =3 then va(B — 1) = wva(a) — 3 > 1.
3. If ua(h™) > 4 then va(a) = 3, A =129 (mod 1024), B = 16 (mod 32), and
vo(B) =va(h™) —3 > 1.

Proof. The fact that At is odd is standard. By [5, p. 598], v2(h™) > 2. Also, since
p =1 (mod 8), a and b are integers. Moreover, a® — pb?> = —1, s0 a = 0 (mod 4).
Therefore pb? = 1 (mod 16), and b = 3 (mod 8). Since —1 is a square mod b, we
must have b = 1 (mod 4),so b =5 (mod 8). Since €* = 2a*+1+2ab,/p = 1+2ab,/p
(mod 4a), vz (logy €) = va(a).

Assume vy(h™) = 2. Then vy (La(1, x)) = 2, by Theorem 1, so v3(a) = va(log, €)
= 2. The congruences for A and B follow immediately from the fact that a is 4
times an odd number, hence a? = 16 (mod 128).

Now assume vo(h™) = 3. Then there is a zero 8, and v2(8 — 1) + 3 = va(a) =
vy (10g, €) = va(Lo(1, %)) > 4.

Finally, if vo(h™) > 4 then vy(L2(1, X)) = 3, by the corollary to Theorem 1. This
implies that vs(a) = va(log, €) = 3, which yields the desired results. a

Theorem 7. Let m = pq with p = g = £3 (mod 8).
(@) If p =g =3 (mod 8) then va(h™) =2, va(h™) =0, a = 23 (mod 64), b=4
(mod 8), va(log, €) =2, and La(s,x) has no zero in Zs.
(b) If p=q=5 (mod 8), then va(h™) > 3.
1. If va(h™) = 3, then va(h™) > 1, 203(B) — 1 = vy(A —1) > 5, and
’Ug(ﬁ - 1) = ’Ug(h+) + ’UQ(B) —4 > 1.
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2. If va(h™) > 4 then va(ht) =1, v2(8) = va(h™) —3 > 1, vy(logy €) = 2,
A =33 (mod 256), and B =8 (mod 16).

Remark. In part (b)(1), va(h™) is not constant. For example, if m = 65 then
h™ =8 and ht =2, and if m = 5 x 461 then A~ = 24 and At = 16.

Proof. (a) a® — pgb? = 1 implies a is odd and b is even. Therefore we may assume
(by switching p and ¢ if necessary) that (a +1)/2 = pr? and (a — 1)/2 = ¢s*. This
yields pr? — gs? = 1, hence r = 2 (mod 4) and s = 1 (mod 2). Therefore a =
—1 4 2pr? = 23 (mod 64). Also, b = 2rs = 4 (mod 8). Therefore vo(log, €) = 2.
By [10, Prop. 4], v2(h™) = 2, s0 La(s, x) has no zero in Zy and vo(h+) +v2(log, €) =
va(L2(1,x)) = 2. Therefore vy(h™) = 0.

(b) By [10, Prop. 4], vo(h™) > 3. If vo(h™) = 3 then La(s,x) has a zero 8 =1
(mod 2). We have 4 < v5(8 — 1) + 3 = vy(logs €) + vo(ht). If va(h~) > 4 then
vo(logsy €) + vo(h*) = vo(La(1,x)) = 3 and 8 =0 (mod 2).

If € has negative norm, then a? — pgb? = —1, so a = 0 (mod 4), which implies
that A = 1 (mod 32). Since 42 — pgB? = 1, we obtain B = 0 (mod 8), hence
va(logy €) > 2. Also, if Norm € = —1 then At = h}. Since 2|k, we have vy(h*) >
1. In the case that va(h™) > 4, we therefore obtain vs(log, €) = 2 and vo(hT) = 1.

If € has positive norm, then a? — pgb? = +1, so a is odd and b = 0 (mod 4).
We may assume (a + 1)/2 = pr? and (a — 1)/2 = gs?, which yields pr? — ¢s® = 1.
Therefore p is a square mod ¢ (and ¢ is a square mod p), so 4|k (see [5, p. 596]).
Therefore vo(h™) > 1. Again in the case that v2(h™) > 4, we obtain vy (log, €) = 2
and va(h™) = 1.

When vy(log, €) = 2, in both cases (Ne = 41 and Ne = —1) we have B = 8
(mod 16), so A2 = 65 (mod 512). Therefore A = £33 (mod 256). Since A = 2a% —
Ne = 2pgb? + Ne = 1 (mod 32) in both cases, we obtain A = 33 (mod 256). O

Finally, for completeness, we list what happens when A~ = 0. The proofs, which
we omit, are very similar to those given above. Note that in this case we have both
va(bg) = 0 and v (L2(1, %)) = 1, so we expect congruences for h~, ht, and .

In part (2), we consider ¢* instead of ¢, since € is not necessarily in Z[,/p]. Note
that vz (logy(€%)) = va(log, €), so there is little effect on our other calculations.

Theorem 8. Suppose A~ = 0.
1. If m = p' =3 (mod 8), then va(h™) = 0, vo(hT) =0, va(logye) =1, a = 2
(mod 4), A=17 (mod 64), B=4 (mod 8).
2. If m = p =5 (mod 8), then va(h™) = 1, va(hT) = 0, va(logye) = 1. If
S =a +V/pand € = A + B'\/p, then o’ =2 (mod 4), ¥’ = 1 (mod 4),
A"'=9 (mod 64), B’ =4 (mod 8).

3. If m = 2p with p =3 (mod 8), then vo(h™) =1, va(h*) =0, va(logy €) = 2,
a =5 (mod 32), b=2 (mod 4).
4. If m = 2p with p =5 (mod 8), then va(h™) =1, va(hT) = 1, va(logy €) = 3,

a=1 (mod 2), b=1 (mod 2).

3. NUMERICAL RESULTS

Using PARI, we calculated vs(h™* log, €) and va(h™), and consequently v (6 — 1)
and vy(0), and obtained the following data. For example, the 311 in the first row
of the first table means that there are 311 primes p = 9 (mod 16) less than 10°
such that there is a zero 8 with vo(8 — 1) = 0 for the 2-adic L-function of the
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Q(v2p) with p=9 (mod 16)  (cf. Theorem 4)

va(B—1) nof| 0 1 2 3 1415
O0<p<10®| 601] 311|160| 74| 26|12 7
103<p<2x10% | 519 | 252|128 | 82| 28|15 |10
2x10°<p<3x10° | 489 | 251|139 | 63| 28|12 7
3x105<p<4x10° | 498 | 243|106 | 56| 28|11 10
4x10°<p<5x10° | 477 | 236|123 | 74| 37|10 10
Total | 2584 | 1293 | 656 | 349 | 147 | 60 | 44 | 1

o
v

AR W o A D]~

0 wWoWwWwww

v (6) 0 17213475
0<p<10®| 284|155 | 79| 4112412
105<p<2x10°| 270|134 | 50| 30|13 |20
2x10°<p<3x10° | 253|132 | 58| 31|13 12
3x10°<p<4x10°| 220|137 | 51| 32|10| 6
4x10°<p<h5x10° 1 261|120 59| 30|12| 6
Total | 1288 | 678 | 297 | 164 | 72 | 56 | 1

o
v

o OO O

o Crtw ot ot O

Q(+/69) with ¢ =3 (mod 8) (cf. Theorem 5, part (3))

va(8 — 1) 0 1 2 3[4 ]56][>7
3<q<10° [ 1192 ] 582 ] 329|144 | 76| 39 (21| 25
10°<q<2x10° | 1052 | 493 | 271|128 | 67| 30| 15| 30
2x10°<q<3x105 | 1005 | 493 | 223 | 147 | 62| 41 23| 5
3x1059<q<4x10° | 978 | 523 | 250 | 95¢ 70| 25|22 | 12
4x10°<q<5x10° | 976 | 456 | 249 | 143 | 57| 41|14 | 13
Total | 5203 | 2547 | 1322 | 657 | 332 | 176 | 95 | 85

02(8) 0 1 2 [ 3 4] 5]6]=>7
3<q<10° | 1216 | 575 | 304 | 158 | 87| 47|21 | 0
105<q<2x10° | 1034 | 521 | 260 | 144 | 61| 24 (35| 7
0

7

2x10°<q<3x10° | 994 | 497 | 262|118 | 64| 37|17 | 1
3x10°<g<4x10® | 997 | 492 | 258 [119| 63| 30| 9
4x10°<qg<5x10% | 973 | 474 | 243|126 | 73| 27|15| 18

Total | 5214 | 2559 | 1327 | 665 | 348 | 165 | 97 | 42

corresponding quadratic field Q(1/2p). Note that this number also gives the total
number of examples of v2(8) > 0 (i.e., the sum of the first row of the second part
of the table, omitting the first entry).

These tables indicate that, for the fields considered such that 8 exists, vo(8—1) =
i > 0 with probability approximately 2-(+1. Similarly, vo(8) = i > 0 with
probability approximately 2~(*1) In the families where 3 does not always exist,
approximately half of the fields are such that 3 exists.

The 2-parts of the class groups of the imaginary quadratic fields considered are
either cyclic (27) with j > 2 (for Q(v/—2p) and Q(/=p)) or of the form (2) x (27)
with j > 2 (for Q(/—6q) and Q(v/—5p). This follows from [11]). The philoso-
phy of the Cohen-Lenstra heuristics [3], extended to the present situation, would
predict that the occurrence of a group as the 2-part of the class group is inversely
proportional to the size of its automorphism group. For the case where the 2-part
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Q(y/p) with p =9 (mod 16)  (cf. Theorem 6)

vy (f—1) nof3| 0 1 2 3141516 |>7
0<p<10°| 595 | 309 |127| 8| 43|15 9| 7| 3
10°<p<2x10°| 522 | 258 |128| 69| 35|14 9| 3| 3
2x10°<p<3x10°| 504 | 241|128 | 52| 34|19 |11 3 1
3x10°<p<4x10°| 463 256|122 | 63| 27|19| 6| 3| 2
4x10°<p<5x10° | 497 | 239 |119| 64| 34 |12| 5| 2| 2
Total | 2581 | 1303 | 624 | 336 | 173 | 79 | 40 | 18 | 11
v2(B) 0 172737475716
0<p<10°| 2921153 ] 93] 35(22] 5| 1
10°<p<2x10° | 261|139 | 64| 25|15| 8| 7
2x10°<p<3x10® | 248 | 132| 55| 28| 9| 9| 8
3x10°<p<4x10°| 242|128 | 72| 29|17| 7| 3
4x10°<p<5x10° | 238|123 | 58| 29|13 | 6|10
Total | 1281 | 675 | 342 | 146 | 76 | 35 | 29

Q(+/5p) with p=5 (mod 8)  (cf. Theorem 7(b))
(- 1) 0 1 2 1345 [6][>7
5<p< 10° 1 1192 | 620 306 | 148 | 58| 40| 14 20
105 <p<2x10° | 1061 | 513 | 275|136 | 68| 29|17 13
2x10°<p<3x10® | 1001 | 510 | 270 | 91| 69| 36|17 | 18
3x10°< p<4x 105 11004 | 492 | 235|137 ] 49| 25|15 16
4x10° <p<bHx 10° 940 | 475 254|122 53| 30| 13 14
Total | 5198 | 2610 | 1340 | 634 | 297 | 160 | 76 81

v2(B) 0 1 2 | 3] 45 ][6][=>7
5<p<10° | 1206 | 601 | 300 | 152 | 76| 44|18 | 1

105 <p<2x10° | 1051 | 526 | 276 | 120 | 85| 27| 17| 10
2x10°<p<3x10° | 1011 | 487 | 248 |136| 64| 29|23 | 14
3x10°<p<4x10° | 969 | 458 | 253|153 | 81| 32|i7| 10
4x10°<p<5x10° | 961 | 463 | 228 |124| 66| 35|16| 8
Total | 4898 | 2535 | 1305 | 685 | 372 | 167 | 91 | 43

of the class group is cyclic of order 27, the automorphism group has order 2771,
Combining this with the above, we find that this extension of the Cohen-Lenstra
heuristics to these cases is equivalent to the statement that va(8) = 4 > 0 with
probability 2~ (+1)

The elements of the automorphism group of (2) x (27) with j > 2 can be

represented by matrices (Z fl)’ where a = 1, b € Hom(Z/2Z, Z/2'Z), ¢ €

Hom(Z/ QJZ, 7.)27), and d € Aut(Z/27Z). Therefore this automorphism group
has order 2/*!. Again we find that the extension of the Cohen-Lenstra heuristics
is equivalent to v,(3) = 7 with probability 2~ (+1),
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